The Crystal Structure of Di - μ-hydroxo-bis-($N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine)dicopper(II) Bromide

By T.P. Mitchell and W. H. Bernard
Physics Department, Louisiana Polytechnic Institute, Ruston, Louisiana, U.S.A.
and J. R. Wasson
Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, U.S.A.

(Received 8 October 1968 and in revised form 10 October 1969)
Crystals of $\left[\mathrm{Cu}_{2}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{2}(\mathrm{OH})_{2}\right] \mathrm{Br}_{2}$ are orthorhombic, space group Fddd, with eight formula units in a unit cell of dimensions $a=17.072, b=18.482$ and $c=12.825$, all $\pm 0.005 \AA$. The structure was determined by three-dimensional Patterson syntheses from data taken with Nifiltered $\mathrm{Cu} K \alpha$ radiation using the equi-inclination, multiple-film Weissenberg technique. The formula unit was found to have a dimeric structure with a $\mathrm{Cu}-\mathrm{Cu}$ distance of $3.000 \AA$. Anisotropic refinement was carried out by the method of block-diagonal least-squares to obtain a final R index of 0.082 .

Introduction

A large number of copper(II) complexes having subnormal magnetic moments (i.e. moments lower than the 1.73 BM expected for $3 d^{9}$) have been postulated to be dimeric (Kato, Jonassen \& Fanning, 1964; Lewis, 1965), largely on the basis of magnetic susceptibility measurements and by analogy with dimeric copper(II) acetate monohydrate (van der Marel, van der Broek, Wasscher \& Gorter, 1955; van Niekerk \& Schoening, 1953; Chidambaram \& Brown, 1965). In the copper(II) acetate type of complexes, which are also characterized by an additional electronic absorption band reportedly arising from the π-system of the alkanoate, the low magnetic moments are thought to arise from direct metal-metal interaction (δ-bonding) (Dubicki \& Martin, 1966), since the $2.61 \AA \mathrm{Cu}-\mathrm{Cu}$ distance in $\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (van der Marel et al., 1955; van Niekerk \& Schoening, 1953; Chidambaram \& Brown, 1965) is only slightly greater than the interatomic distance of $2 \cdot 56 \AA$ in metallic copper. With $N, N, N^{\prime}, N^{\prime}-$ tetraalkyl-substituted diamines, copper(II) forms complexes formulated as $\left[\mathrm{Cu}_{2}(\mathrm{OH})_{2}(\text { diamine })_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ with bridging hydroxide ions (Pfeiffer \& Glaser, 1938; Mann \& Watson, 1958; Hatfield, Piper \& Klabunde, 1963; Meek \& Ehrhardt, 1965). The antiferromagnetic and conductivity behavior of these compounds has been used to support the postulated structures. These hy-droxy-bridged compounds bave room-temperature magnetic moments of about 1.5 BM (Hatfield et al., 1963; Meek \& Ehrhardt, 1965; Wasson, Mitchell \& Bernard, 1968). Since the low magnetic moments of copper(II) compounds can also arise from a superexchange mechanism, we have undertaken electron spin resonance (Wasson, Shyr \& Trapp, 1968) and structural studies of dimeric copper(II) compounds in order to discover criteria for distinguishing between the two metal-metal interaction mechanisms and to provide further structural information about
dimeric copper(II) complexes. While the nitrate and perchlorate salts containing the di- μ-hydroxo-bis($N, N, N N^{\prime}, N^{\prime}$-tetramethylethylenediamine) dicopper (II) ion, $\left[\mathrm{Cu}_{2}(\mathrm{OH})_{2}(\mathrm{tmen})_{2}\right]^{2+}$, have been known for several years (Mann \& Watson, 1958; Meek \& Ehrhardt, 1965), the preparation of the bromide salt from the reaction of tmen with $\mathrm{Cu}_{2}(\mathrm{OH})_{3} \mathrm{Br}$ or saturated aqueous solutions of copper(II) bromide has been described only recently (Wasson, Mitchell \& Bernard, 1968). A subsequent structure analysis reported here has confirmed the dimeric structure of the bromide salt which was initially postulated on the basis of magnetic susceptibility data.

Crystal data

Burgundy colored, bipyramidal $\{111\}$ crystals of $\left[\mathrm{Cu}_{2}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{2}(\mathrm{OH})_{2}\right] \mathrm{Br}_{2}$ were obtained by evaporating an aqueous solution of the compound at room temperature. The crystals begin to decompose at about $42^{\circ} \mathrm{C}$. The cell parameters were determined by Cohen's method of least-squares using 24 lines of a Debye-Scherrer powder photograph taken with $\mathrm{Cu} K \alpha$ radiation ($\lambda=1 \cdot 5418 \AA$). Sodium chloride ($a_{0}=5.63869 \AA$) was used as a standard in these powder photographs. The crystal density was determined by flotation in a mixture of carbon tetrachloride and iodomethane. The crystal data are given in Table 1.

Table 1. Crystal data

$$
\mathrm{C}_{12} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}
$$

Formula weight $553 \cdot 3$
Space group Fddd
$Z=8$
$a=17.072 \pm 0.005 \AA$ (one standard deviation)
$b=18.482 \pm 0.005$
$c=12.825 \pm 0.005$
Volume of unit cell $4047 \AA^{3}$
$D_{m}=1.824 \pm 0.015 \mathrm{g.cm}^{-3}$
$D_{x}=1.816{\mathrm{~g} . \mathrm{cm}^{-3}}$
$\mu(\mathrm{Cu} K \alpha)=78.1 \mathrm{~cm}^{-1}$

Experimental

Equi-inclination Weissenberg photographs were taken using the three crystals listed in Table 2. The multiplefilm technique was employed using four films. A total of 907 independent reflections were recorded out of a possible 1166 non-extinct reflections. Of the 907 reflections recorded 307 were too weak to be observed. The intensities were estimated visually using a calibrated intensity strip. The data collected about the a and b axes were used to scale the different layers taken about the c axis.

Intensities were corrected for absorption using a modified form of an IBM 1620 program by Bernard \& Langhammer (1966). They were then corrected for Lorentz and polarization effects and converted to structure factors using an IBM 1620 program by Shiono (1966).

Table 2. Crystals used for intensity data collection

Dimensions are Rotation axis	lengths in x, y and z Dimensions (mm)	directions respectively. Data collected
a	$0.49 \times 0.56 \times 0.39$	$0 \mathrm{kl}, 1 \mathrm{kl}$
b	$0.34 \times 0.36 \times 0.26$	$h 0 l, h 1 l$
c	$0.46 \times 0.60 \times 0.34$	$h k 0$ thru $h k 9$

Structure determination

Because there are but eight formula units in the unit cell, the point symmetry of the formula unit must be 222. The bromine and copper atoms were located from suitable Patterson peaks for $\mathrm{Br}-\mathrm{Br}, \mathrm{Br}-\mathrm{Cu}$ and $\mathrm{Cu}-\mathrm{Cu}$ on the three-dimensional Harker section $V=0$. These Patterson peaks correspond to Wyckoff positions (e) for the bromine atoms and (g) for the copper atoms (International Tables for X-ray Crystallography, 1952). A preliminary R index ($R=\sum| | F_{o}\left|-\left|F_{c}\right| / / \Sigma\right| F_{o} \mid$) calculated with bromine and copper only was 0.238 using 314 observed reflections. The form factors used were those given in International Tables for X-ray Crystallography (1962) for Br^{1-} and Cu^{2+}.

The nitrogen and carbon atom positions were calculated on the basis of a molecular model. Adding N , $C(1), C(2)$ and $C(3)$ to the structure factor calculations, an R index of 0.169 was obtained using 314 observed reflections.

At this point a Patterson peak for $\mathrm{Br}-\mathrm{O}$ located the oxygen atom. The R index was reduced to 0.135 using 314 observed reflections. The form factors used for carbon, nitrogen and oxygen were those given in International Tables for X-ray Crystallography (1962).

Refinement

Refinement was carried out using a block-diagonal least-squares program by Mair \& Ahmed (1966) for the IBM 1620 computer. The quantity minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$. The weighting scheme used was $w=$
$1 /\left\{1+\left[\left(F_{o}-5 F_{\min }\right) / 8 F_{\min }\right]^{2}\right\}$. After five cycles of leastsquares using isotropic temperature factors, the R index for all 600 observed reflections was $0 \cdot 163$. At this stage the isotropic temperature factors were converted to anisotropic temperature factors and the form factors for Br and Cu were corrected for the real part of the anomalous scattering. In one cycle of least-squares the R index was 0.123 . Six cycles of least-squares and one cycle of layer-to-layer rescaling of the data reduced R to 0.085 , using 581 observed reflections. The symmetryrelated reflections from the five sets of planes $4.4 n .4$ on the $l=4$ equi-inclination photograph showed large unexplained variations. Since a flat cone photograph of the $l=4$ layer showed no such variations, it was concluded that the large enhancement of some of these inherently weak reflections was due to multiple diffraction (Santoro \& Zocchi, 1966) and very slight crystal misalignment. These reflections were therefore omitted from the final refinement calculations, as was the only reflection (111) which had been estimated from powder data. Also omitted at this stage were thirteen reflections which were suspected of being reduced in intensity by secondary extinction. These reflections are indicated in Table 3 by E for reflections suspected of being affected by extinction, M for multiple diffraction, P for powder data and U for reflections too weak to be observed. All reflections too weak to be observed are given an F_{o} of zero in Table 3; most of them are of the type $(h+k+l)=4 n+2$, to which the Br, Cu and O atoms do not contribute.
At this point, a difference map indicated the positions of several hydrogen atoms. Eight hydrogen atom positions were calculated and refined isotropically, holding all other atoms fixed. The R index was reduced to 0.0806 ; however, the resulting positions, temperature factors and large standard deviations were unsatisfactory. New hydrogen positions, suggested by this refinement but adjusted to make the $\mathrm{C}-\mathrm{H}$ bonds $1.07 \AA$ and the angles tetrahedral, were then calculated. The hydrogen atoms of the bridging $\mathrm{O}-\mathrm{H}$ groups were not located. With the hydrogen atoms fixed, three cycles of least-squares were used to refine the other atoms anisotropically. The final parameters are listed in Table 4 along with their standard deviations. The final shifts in all coordinates were less than the standard deviations in the coordinates. The final R index was 0.082 , using 581 observed reflections.

Discussion

One formula unit viewed along the y axis is shown in Fig. 1 along with neighboring atoms from other formula units. The atoms drawn with solid lines make up one formula unit; $\mathrm{Br}^{\prime \prime}$ and $\mathrm{Br}^{\prime \prime \prime}$ are respectively above and below this formula unit by $\frac{1}{4} b$. The formula unit has 222 point symmetry. This requires the copper, oxygen and bromine atoms to all lie in the same plane; however, the two ethylenediamine rings are in a gauche configuration. The $\mathrm{N}-\mathrm{Cu}-\mathrm{N}^{\prime}$ plane makes an angle of

Table 3. Observed and calculated structure factors
E: extinction, M: multiple diffraction, P : powder data, U : too weak to be observed.

Abstract

 fan ${ }^{n} \times$ fors fCAL ${ }^{-1}{ }^{n} \times$

Table 4. Atomic positions and thermal parameters ($\times 10^{5}$)
Origin at center of symmetry (International Tables for X-ray Crystallography, 1952, p. 162)
Standard deviations are in parenthesis.* Hydrogen positions ($\times 10^{3}$).
$f=f_{o} \exp \left[-\left(B_{11} h^{2}+B_{22} k^{2}+B_{33} l^{2}+B_{23} k l+B_{13} h l+B_{12} h k\right)\right]$.

	x / a	y / b	z/c	B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}
Br	39074 (6)	12500	62500	276	383	366	-2	0	0
Cu	12500	12500	50805 (15)	209	314	189	0	0	3
0	19355 (12)	12500	62500	227	512	476	39	0	0
N	20620 (58)	11732 (62)	39299 (71)	293	372	270	-59	-197	-48
C(1)	15930 (97)	10266 (91)	29570 (115)	407	482	438	214	221	-41
C(2)	25303 (86)	18359 (85)	39065 (120)	379	374	546	154	119	-69
C(3)	25972 (92)	05404 (90)	40465 (138)	368	339	809	-265	277	61
H(1)	141	047	293						
H(2)	196	114	229						
H(3)	215	230	389						
H(4)	287	188	462						
H(5)	291	183	324						
H(6)	308	058	352						
H(7)	284	053	483						
H(8)	227	006	391						

$B=6.0$ for all hydrogen atoms.

* The computer program used does not compute standard deviations for the thermal parameters.

Fig. 1. Formula unit viewed along the y axis with some nearest neighbors.

Bond lengths and angles along with their standard deviations are shown in Fig. 1 and non-bonded interatomic distances and their standard deviations are listed in Table 5. The $\mathrm{Cu}-\mathrm{O}$ bond length of $1.902 \AA$ in $\left[\mathrm{Cu}_{2}(\mathrm{OH})_{2}(\operatorname{tmen})_{2}\right] \mathrm{Br}_{2}$ is comparable with those found in $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right) \mathrm{Cl}_{2}\right]_{2}$ (Schlafer, Morrow \& Smith, 1965; Sager, Williams \& Watson, 1967) and $\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O} .4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (Kilbourn \& Dunitz, 1967) which also have bridging oxygen atoms, and is shorter than the $\mathrm{Cu}-\mathrm{O}$ distances in $\mathrm{Cu}_{2}(\mathrm{OH})_{3} \mathrm{Br}(2.00$ and $2.02 \AA$), $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(1.93 \AA), \mathrm{K}_{2} \mathrm{CuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}(1.97 \AA)$ (Wells, 1962) and anhydrous copper(II) formate (1.99 \AA) (Barclay \& Kennard, 1961).

Table 5. Non-bonded interatomic distances and estimated standard deviations

$\mathrm{Cu}-\mathrm{Br}$	$4.778 \pm 0.002 \AA$
$\mathrm{Cu}-\mathrm{Br}^{\prime \prime}$	4.933 ± 0.002
$\mathrm{Cu}-\mathrm{Cu}^{\prime}$	$3 \cdot 000 \pm 0.004$
$\mathrm{O}-\mathrm{Br}$	3.366 ± 0.003
$\mathrm{O}-\mathrm{C}\left(2^{\prime \prime}\right)$	3.659 ± 0.02
$\mathrm{N}-\mathrm{Br}^{\prime \prime}$	5.047 ± 0.02
$\mathrm{N}-\mathrm{Br}^{\prime \prime \prime}$	4.622 ± 0.02
$\mathrm{C}(1)-\mathrm{Br}^{\prime \prime}$	$5 \cdot 205 \pm 0.02$
$\mathrm{C}(1)-\mathrm{Br}^{\prime \prime}$	4.340 ± 0.02
$\mathrm{C}(2)-\mathrm{Br}$	3.966 ± 0.02
$\mathrm{C}(2)-\mathrm{Br}^{\prime \prime}$	4.310 ± 0.02
$\mathrm{C}(2)-\mathrm{C}\left(2^{\prime \prime}\right)$	3.729 ± 0.02
$\mathrm{C}(3)-\mathrm{Br}$	3.835 ± 0.02
C(3) $-\mathrm{Br}^{\prime \prime \prime}$	3.901 ± 0.02
$\mathrm{C}(3)-\mathrm{C}\left(2^{\prime \prime}\right)$	3.764 ± 0.02

The $\mathrm{Cu}-\mathrm{N}$ bond length of $2.030 \AA$ and $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angle of 86.7° are normal for ethylenediamine complexes (Brown \& Lingafelter, 1964; Komiyama \& Lingafelter, 1964) and for complexes with ligands based on an ethylenediamine type of linkage (Llewellyn \& Waters, 1966). In the copper(II) ethylenediamine complexes which have been studied, ethylenediamine has a gauche configuration (Brown \& Lingafelter, 1964; Komiyama \& Lingafelter, 1964).

The $3.000 \AA \mathrm{Cu}-\mathrm{Cu}$ distance in $\left[\mathrm{Cu}_{2}(\mathrm{OH})_{2}(\mathrm{tmen})_{2}\right] \mathrm{Br}_{2}$ is rather characteristic of dimeric copper(II) compounds (Schlafer, Morrow \& Smith, 1965; Sager, Williams \& Watson, 1967; Kilbourn \& Dunitz, 1967; Bertrand, 1967; Barclay \& Kennard, 1961; Barclay \& Hoskins, 1965; Wallwork \& Addison, 1965; Schlueter, Jacobsen \& Rundle, 1966) not having the copper(II) acetate monohydrate type of structure (van Niekerk \& Schoening, 1953; Barclay \& Kennard, 1961; Hanic, Štempelová \& Hanicová, 1964; Chidambaram \& Brown, 1965; O'Connor \& Maslen, 1966; Manojlović-Muir, 1967). In the latter structure the $\mathrm{Cu}-\mathrm{Cu}$ distance of about $2 \cdot 63 \AA$ is presumably responsible (Figgis \& Martin, 1956) for weak δ-bond formation which causes the subnormal magnetic moments observed for such compounds. Qualitative calculations using Slater orbitals show that δ-bonding type interaction between two copper(II) ions is essentially zero at a distance of $2 \cdot 80 \AA$. For compounds like $\left[\mathrm{Cu}_{2}(\mathrm{OH})_{2}(\operatorname{tmen})_{2}\right] \mathrm{Br}_{2}$ where there appears to be no opportunity for direct

Fig. 2. Formula unit viewed along the x axis.

Fig. 3. Formula unit viewed along the z axis.
metal-metal interaction, spin coupling takes place by super-exchange. On the basis of Anderson's theory (Anderson, 1959), super-exchange, i.e. exchange via the ligand atom, takes place because of overlap of the ligand atom orbitals with the magnetic orbitals of the metal. Exchange results from contact between magnetic wave functions having a common ligand atom orbital
component but different metal atom components. Thus super-exchange can occur over large distances because the magnetic wave functions themselves are spread over long distances.

The $\mathrm{O}-\mathrm{Br}$ distance of $3 \cdot 366 \AA$ leads us to believe there is hydrogen bridging $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{Br}$. In manganese(II) and cobalt(II) bromide dihydrate, $\mathrm{Br}-\mathrm{O}$ separations involving hydrogen bonding are 3.39 and $3.37 \AA$ respectively. Several attempts to locate this hydrogen atom have not produced any conclusive results.

This hydrogen bridging requires approximate $s p^{2}$ hybridization for the oxygen atoms. $\left[\mathrm{Cu}_{2}(\mathrm{OH})_{2}{ }^{-}\right.$ (tmen) $\left.)_{2}\right] \mathrm{Br}_{2}$ exhibits a strong OH stretching band at $3410 \mathrm{~cm}^{-1}$. While the OH band supports hydroxy-bridging between the copper ions (Ferraro \& Walker, 1965; McWhinnie, 1964, McWhinnie, 1965), the value of the OH frequency suggests hydrogen bonding, since 'free' OH groups lead to sharp bands around $3620 \mathrm{~cm}^{-1}$ while H -bonded OH groups have broad bands around $3320 \mathrm{~cm}^{-1}$ (Brand \& Eglinton, 1965).

References

Anderson, P. W. (1959). Phys. Rev. 115, 2.
Barclay, G. A. \& Hoskins, B. F. (1965). J. Chem. Soc. p. 1979.

Barclay, G. A. \& Kennard, C. H. L. (1961). J. Chem. Soc. p. 3289, 5244.

Bernard, W. H. \& Langhammer, D. (1966). IUCr World List of Crystallographic Computer Programs, 2nd ed. p. 19. Exact Absorption Correction. Program 450.

Bertrand, J. A. (1967). Inorg. Chem. 6, 495.
Brand, J. C. D. \& Eglinton, G. (1965). Applications of Spectroscopy to Organic Chemistry, p. 136. London: Oldbourne Press.

Fig.4. Unit cell viewed along the y axis. $\bigcirc: 0<y<\frac{1}{4}, \ominus$: $\frac{1}{4}<y<\frac{1}{2}, \quad \theta: \frac{1}{2}<y<\frac{3}{4}, \quad$: $\frac{3}{4}<y<\frac{4}{4}$.

Brown, B. W. \& Lingafelter, E. C. (1964). Acta Cryst. 17, 254.

Chidambaram, R. \& Brown, G. W. (1965). Program and Abstracts. American Crystallographic Association Meeting.
Dubicki, L. \& Martin, R. L. (1966). Inorg. Chem. 5, 2203. Ferraro, J. R. \& Walker, W. R. (1965). Inorg. Chem. 4, 1382.

Figgis, B. N. \& Martin, R. L. (1956). J. Chem. Soc. p. 3837.
Hanic, F., Štempelová, D. V. \& Hanicová, K. (1964). Acta Cryst. 17, 633.
Hatfield, W. E., Piper, T. S. \& Klabunde, U. (1963). Inorg. Chem. 2, 629.
International Tables for X-ray Crystallography (1952). Vol.I. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kato, M., Jonassen, H. B. \& Fanning, J. C. (1964). Chem. Rev. 64, 99.
Kilbourn, B. T. \& Dunitz, J. D. (1967). Inorg. Chim. Acta, 1, 209.
Komiyama, Y. \& Lingafelter, E. C. (1964). Acta Cryst. 17, 1145.

Lewis, J. (1965). Plenary Lectures, 8th International Conference on Coordination Chemistry, Vienna, 1964. London: Butterworth.
Llewellyn, F. J. \& Waters, T. N. (1960). J. Chem. Soc. p. 2639.

McWhinnie, W. R. (1964). J. Chem. Soc. p. 2959.
McWhinnie, W. R. (1965). J. Inorg. Nucl. Chem. 27, 1063.
Mair, G. A. \& Ahmed, F. R. (1966). IUCr World List of Crystallographic Computer Programs, 2nd ed. p. 38. Structure Factor and Block Diagonal Least-Squares Refinement. Program 457.
Mann, F. G. \& Watson, H. R. (1958). J. Chem. Soc. p. 2772.

Manojlović-Muir, L. (1967). Chem. Comm. p. 1057.
Marel, L. C., vander, van der Broek, J., Wasscher, J. D. \& Gorter, C. J. (1955). Physica, 21, 685.
Meek, D. W. \& Ehrhardt, S. A• (1965).'Inorg.'Chem. 4, 584.
Niekerk, J. N. van \& Schoening, F. R. L. (1953). Acta Cryst. 6, 227.
O'Connor, B. H. \& Maslen, E. N. (1966). Acta Cryst. 20, 824.

Pfeiffer, P. \& Glaser, H. (1938). J. prakt. Chem. 151, 134.
Rado, G. T. \& Suhl, H. (1963). Magnetism, Vol. 1, Ch. 2. New York: Academic Press.
Sager, R. S., Williams, R. J. \& Watson, W. H. (1967). Inorg. Chem. 6, 951.
Santoro, A. \& Zocchi, M. (1966). Acta Cryst. 21, 293.
Schlafer, H. L., Morrow, J. C. \& Smith, H. M. (1965). J. Chem. Phys. 42, 504.

Schlueter, A. W., Jacobsen, R. A. \& Rundle, R. E. (1966). Inorg. Chem. 5, 277.

Shiono, R. (1966). IUCr World List of Crystallographic Computer Programs, 2nd ed. p. 37. Lp Correction for Equi-inclination Weissenberg. Program 489.
Wallwork, S. C. \& Addison, W. E. (1965). J. Chem. Soc. p. 2925.

Wasson, J. R., Mitchell, T. P. \& Bernard, W. H. (1968). J. Inorg. Nucl. Chem. 30, 2865.

Wasson, J. R., Shyr, C. I. \& Trapp, C. (1968). Inorg. Chem. 7, 469.
Wells, A. F. (1962). Structural Inorganic Chemistry, 3rd ed. p. 878. London: Oxford Univ. Press.

